Software Engineering
Ny

&
Part | Software En%@@ring Fundamentals

Part 2 SoftwareQ’
>

ysis

partl

S
Software,\\

Engm%é?'mg
Fundamentals

Software

(1) Instructions (computer programs) that
when executed provi%@@esired features,
function, and perforsyance

perforsn

(2) Data structus@othat enable the
. (b, .
programs to adequately manipulate
informatip@}

(3) Des&icf:)tive information in both hard
copy and virtual forms that describes the
operation and use of the programs.

Software Product

« IEEE defines “Softwaréis the collection
of computer progra@& orocedure rules
and associated d%ci}mentation and data. “

N

execut programming code, associated
libraries'and documentations. Software,
when made for a specific requirement is
called software product.

e .
» Software Es@%nmdered to be collection of

By SWARNIMA SHRIVASTAVA

Charactergcstlcs of

“Infant “Wear out" —___

mortality”

Failure rate

- :
.\(b, me
* software has‘one fundamental

characf/@%tlc that makes it considerably
different'from hardware: Software

doesn’t ‘“‘wear out.”’

Failure rate

Increased failure
rate due to side
effects

Actual curve

ldealized curve

Time

» software will undergo change.
As changes made, it is Iigé%' that errors will

be introduced, causing the failure rate curve
to spike as shown '@ﬁe “actual curve”
Before the curveé\ean return to the original
steady-state f@hre rate, another change is
requesteq?sing the curve to spike again.
Slowly, the minimum failure rate level begins
to rise—the software is deteriorating due to

change.

Software engineering

» Software engineering is an engineering
branch associated witltﬂ%velopment of
9, :

software product using well-defined
scientific princiKlQ@,\methods and
procedures.TQ@outcome of software

: o xQ . . :
englneery{&"}s an efficient and reliable
softwageiproduct.

Definition

|IEEE defines software engineering as:

(1)The applicatis o‘f? of a
systematic, d|SC|pI|n@a‘ quantifiable
approach to the&‘aevelopment operation

and maintenagee of software; that Is, the
applicati engineering to software.

(2) TheGRldy of approaches as in (1).

SDLC

 Software Development Life Cycle, SDLC
for short,is a weII-deféJ@ﬁ%, structured
sequence of stages i) software
engineering to c{@op the intended
software procL&t.
&O
>

Communication

Requirement Gathering
Feasibility Study

Eystegr&alys is

. @O}Mam Design
O

SDLC . Coding

Testing
Integration
Implementation

Operations & Maintenance

By SWARNIMA SHRIVASTAVA

Software Development Life Cycle

IMPLEMENTATION

S
F

3 N
DESIGN TWARE
ELOPMENT

CYCLE

2

ANALYSIS

By SWARNIMA SHRIVASTAVA

Communication

 This is the first step where the user
initiates the request foég desired
software product. ,Ix@tontacts the service
provider and tr@qo negotiate the terms.
He submits hi'@‘?‘equest to the service
Q)

provicinge&anization in writing.
CP

Requirement Gathering

» The requirements are collected using a
number of practices as@@en -

» studying the exmtmg,\Or obsolete system
and software, \Q

» conducting |@§érV|ews of users and

develope&\?’
o referrlr@to the database or

» collecting answers from the
guestionnaires.

Feasibility Study

 After requirement gathering, the team comes
up with a rough plan of sgftware process. At
this step the team ana\l;é?sF If a software can
be made to fulfill atk¥equirements of the user
and If there Is possibility of software
being no more~dseful. It is found out, if the
project Issvfinancially, practically and
technologically feasible for the organization
to take~up. There are many algorithms
available, which help the developers to
conclude the feasibility of a software project.

System Analysis

o At this step the developers decide a roadmap
of their plan and try togbring up the Dbest
software model suitable for the project.
System analysis | qﬁmdes Understanding of
software productJdimitations, learning system
related probleég? or changes to be done In
existing s s beforehand, identifying and
addressgz/g the 11mpact of project on
organization and personnel etc. The project
team analyzes the scope of the project and
plans the schedule and resources accordingly.

Software Design

» Next step Is to bring down whole knowledge
of requirements and ar;atljlﬁ@'s on the desk and
design the software product. The inputs from
users and infgrmation gathered in
requirement gathefing phase are the inputs of
this step. The @;t:i?put of this step comes in the
form of \@Q designs; logical design and
physicaé/ sign. Engineers produce meta-
data antdata dictionaries, logical diagrams,
data-flow diagrams and In some cases
pseudo codes.

Coding

* The goal of coding phase is to translate
the design of the systeoa§5i\nto code in a

given programmin guage.
g fan
N

Testing

* The basic function of testing is to detect
errors in the software Q®

» The goal of testing Q,\to uncover
requirement da@n and coding erros in
the program%&\

N
>

Implementation

» This means installing the software on user
machines. At times, software needs post-
Installation confi lga(fions at user end.
Software iIs t for portability and
adaptability and”integration related issues
are solveg{@?ing implementation.

Cjo

Maintenance

e It is an important part of SDLC

e If there is any error o&@ﬁﬁange is needed
in the system then,it'is part of
: O
maintenance.
S

e The cost of @@intenance is more than the
cost of deyelopment.

Cjo

Types of Maintenance

JCorrective maintenance
JAdaptive maintenancegoQQ
OPerfective maintenaﬁk'e

Q)
OPreventive mai@gnance
&\
\Q
&0
Cjo

Software Development Paradigm

 The software development paradigm helps
developer to select a @f%tegy to develop
the software. A,g&ﬁware development
paradigm has iti@v\n set of tools, methods
and proceduies, which are expressed
clearly a;%ﬁébefines software development
life cygle: A few of software development
paradigms or process models are defined
as follows:

Process Model

e To solve actual problem in an industry a team of
software engineers must incafporate a development
strategy that encompasses tb% process,methods,tools
this strategy Is called proeess model.

» S/W process Mogiel@oan abstract representation of
S/W process. Q&\‘b

» S/W proce e&are categorized into three phases:
Definitiocqs ase, Development phase and support
nhase.

» Process model depends on the nature of software.

Process models

* Waterfall model
 Evolutionary model Q&Q

Prototype m@é’l'
Spiral moﬁk&

o Iteratlvemgﬁ
o Increméﬁtal model

Waterfall model/Linear
sequential/Classic life cycle

QQ®
o Waterfall model is thegimplest process model .

» Proposed by ROY@

e |t consists of a&@he phases of SDLC.

» Phases org@lzed In linear order that’s why It Is
called ligear sequential model.

Requirement
Analysis

System Design

Implementation @)

\,Q&\ Svstem
&0 Deplovment

Q% System
Maintenance

Waterfall Model - © www.SoftwareTestingHelp.com

By SWARNIMA SHRIVASTAVA

29

Feasibility Report

Installation report

By SWARNIMA SHRIVASTAVA

30

When to use

» Requirements are very well known, clear
and fixed. &Q

. Y
e Product deflnltlon.@stable.
» Technology is gg&gerstood
e There are n(@%blguous requirements.
 Ample é§9urces are available.
e Project Is short.

Advantages

e It Is the simplest model.
» Best for straight line d@sglopment.
» It encompasses allggt%'ges of sdlc.

+ It divides thejfask into clearly defined

N
phases. &

» Costly dhd slow but satisfies all the
requirements of user.

Disadvantages

» Customer needs a lot of patience.

e |t 1s difficult for a custom%@ state all the
requirements exphutlyxc’

 Real project rarel)%gﬁ’ow this model.
 Costly and slo

0
¢
Example: atitomobile companies who make cars
or bikes.

Prototype model

Communication

Modeling
Quick design

Deployment
Delivery

Construction
of
prototype

Figure: Prototype Model

Definition

e The goal of prototype model is to build a
prototype that help t@ understand the
requirements. g

 Prototype Is build .@\ the basis of current
requirement.

» Client can get an \actual feel of the system by
using prot(ab

e It givess better Idea to understand the
requirements of the desired system.

o Generally used for large and complicated
system.

Types of prototype model

&Q
o Evoluti&n(@ﬂ'y prototype

When to use

e When customer is clueless about detailed
requirements of the systenbﬁQ

» When it requires a lot imteraction with user.

e Customer is freely 22@' lable to provide feedback
of the prototype-.xq}

Advantages

* It does not require complete set of specification
or requirement before 6«@ development of

software begins. 0

Ny
e When the custo@e? IS clueless this model is
perfect to de@p the quality software.

>

Disadvantages

e The developer makes Implementation

compromise. O@

e

e Needs a lot of in@%tion between client and
developer. QQ}
&O
e This model’may increase the complexity of the

system scope of the system may expand
beyond original plan.

Spiral model

 Proposed by Barry Boehm.
N\

O
o Spiral model is -divided into a set of

framework act»'&lcties defined by s/w
SR
engineering tgam.
S
KLY
C‘o

» These eg:ﬁvities are called task region.

Planning
estimation

scheduling
risk analysis

Communication

Modeling
analysis
design

Deployméhn)
deliver C‘o Construction
f dlg{ code
ee

test

When to use!

e When <cost and risk evaluation
Important. &Q

. D .
 For medium to hlgb,&‘l'Sk projects.
o Users are unsugg&%out their needs.
o Qequiremen@%’re complex.
* New pr @%t line.
o Significant changes are expected.

IS

Advantage

 Realistic approach.

o Customer and developer @"@(?fer understand and
reacts to the risk at eqc&y&/olutionary level.

» Use prototype as riskreduction mechanism.

e It maintains &I@ systematic approach like
waterfall | as well as iIncorporating
Iterative @mework that are realistically reflects
the real world.

« No distinction between development and
maintenance.

Disadvantage

e Time consuming approach.

 Needs greater com@ication between
developer and custome&,o

>

Incremental model

|:| Communicotion
|:| Planning Q@

|:| Modeling [analysis, design) CJ

S

Software Functionality and Features

I ent # n
|:| Construction [code, tesf '%
|:| Deployment [delivery, feedbock] O u

. delivary of
Increment # 2 \ e nth Increment
é y delvery of
incremeant £ 1 % 2nd Increment
] j:tl' delivery of
1sf Imcrement

Project Calendar Time

When to use!?

» Requirements are clearly understood.

>

. . Q
» Major requirements arg_known some are evolve
over time. >

O
~
e Thereis a nee@? get a product in market early.
&Q«
* New tedﬁn%logy being used.

e Resources with needed skills are not available.

Advantages

* Flexible and less costly.
e Easier to test and deb&gﬁQ
e Customer respond@o each built.

Disadvantage

* Needs good planning and design.
Ny

* Total cost is high.

Iterative model

Ny

%

— Cnmmunicu’rionl— Planning t— Mod@} Construction E Deployment |—~

&ﬁ lterative process How
Cjo

Knowledge Engineering
N

* Incremental Developme

—’ &\%{owledge Expert
Expert 4 O Engineer System
N

N -
. Includc-‘;éli(7 ser from beginning

* Provid oices

e Knowledge engineering Is a field of artificial
Intelligence(Al) that creates rules to apply to
data to imitate the thought process of a human
expert. It looks at the structure of a task or a
decision to identify how ag‘@‘%nclusion IS reached.

&

e In Its Initial f@\ \ knowledge engineering
focused on the {ﬁ%sfer process,; transferring the
expertise Q&Qproblem-solving human into a
program.that could take the same data and make
the sameconclusions.

End user development

 End-user development (EUD) or end-user
programming (EUP) refers to activities and tools that
allow end-users — people §care not professional
software developers — toXprogram computers. People
who are not professionalydevelopers can use EUD tools
to create or modi]‘y‘g&tware artifacts (descriptions of
automated behav&'?b and complex data objects without
significant edge of a programming language.
iInclude natural language programming,

Examples
spreadsh&té.

Software Requirements

o Arequirement Is a feature of the system or a description
of something the system is cap@e of doing in order to

fulfill the system’s purpose.
\’.

Ny
Types %&equirement
&
N
*Those that sho(ﬂ&%e absolutely met.

*Those that a@jﬁighly desirable but not necessary.
*Those that are possible but could be eliminated.

Software Requirements

Broadly software requirements should be categorized in
two categories:

1. Functional Reguirements;.(Requirements, which are
related to functional a.s%cfof software fall into this
category. Like 1/Q<>format, storage structure
,computational capaliMities, timing and synchronization

&\
2O . .
2. Non-Func | Requirements: Requirements, which
are not @ed to functional aspect of software, fall into
this category. They are implicit or expected

characteristics of software, which users make
assumption of.

Non-functional requirements include -
Security

Portability ,@
Performance QQ

. A\
Interoperability O

Flexibility QD

Accessibility Q&\‘b‘
Usability &&
Efficienc(jo

Reliability

Requirements Engineering

Requirements Development

|

Requirements
Elicitation

¥

i

L

Requirements
Analysis

¥

-

L Specification

.,

sdeD) § S10000

Requirements

N

.

f.

¥

By S BUR |BUD | PP e
10} poeH

-

L

Requirements
Validation

%,

Requirements Management

@ Establish & maintain an

agreement with the customers &
use n the requirements

a C ol the baselined
uirements
\.

& Process proposed changes to
the requirements

@ Keep requirements consistent
with plans & work products

@ Negotiate new commitments
based on impact of approved
changes

Curranl Requiramanis Lw Requiremants

Baselined Requirements

Software analysis

» Software requirement specification(SRS):
|EEE defines a requirement as

“(1)A condition of capabilitysjeeded by a user to solve
a problem or achieve an jective.

(2) A condltlon or a ity that must be met or
possessed “&%D system satisfy a
contract standardg eC|f|cat|on or other formally
imposed docu@ﬁqt”

&

e The goaCo)‘;TJ requirement activity Is to produce the
SRS that describes what the proposed software
should do without describing how the software will
doit.

Need of SRS

e Basic purpose of SRS Is to bridge the
communication a between client and
gap S@V

developer. O
S\
Advantage of SRS
>

1. Itisan agre&r;&t between user and developer.
2. It provi@s% eference for validation of the final

product.

3. High quality SRS is prerequisite to high quality
S/W.

4. High quality SRS reduces the development cost.

Characteristics of an SRS

© N o O B~ W D e

Correct
Complete Q‘@
. @)

Unambiguous , Q\
Verifiable S

. o\
Consistent Qx
Ranked R@nportance

Modifiable
Traceable

Components of SRS

e Functional requirements :- Functional
requirements specify wt@?output should be
produced from the gﬁ/en Inputs. So they
basically describe ti{g&onnectivity between the
input and output gg&m system.

&\
xO

e Performarr&‘,0 requirements :- Performance
requirer@ﬁts are typically expressed as
processed transactions per second or response
time from the system for a user event or screen
refresh time or a combination of these.

» Design constraints: The client environment may restrict
the designer to include some design constraints that
must be followed. The various design constraints are
standard compliance, resource limits, operating
environment, reliability and se.@rity requirements and
policies that may have an im%ct on the design of the
system. An SRS should @eﬁntify and specify all such

constraints. Q)
N
&\

o External inter requirements: All the possible
Interactions he software with people hardware and
other sofl@ﬁ?e should be clearly specified.

g

Software Requirements
Specification Template

! A software requirements specification [SRS)

| is a work Frl'c:duc’r that is created when a detailed de-
scription of all aspects of the software to be built must
be specified before the project is to commence. It is im-

| portant to note that a formal SRS is not always written. In
; fact, there are many instances in which effort exp&nded
on an SRS might be better spent in other software en-
gineering activities. However, when software is to be
devehped by a third party, when a lack of 5|:recificulic:n
would create severe business issues, or when a system is
exiremely complex or business critical, an SRS may be

justified.
Karl Wiegers [Wie03] of Process Impact Inc. h:NQ'

devehped a worthwhile ’rernplut& |available c:l’r
www.processimpact.com/process_as

Srs lemph:lfe du-:} that can serve as c: ine Fc:r
those who must create a cq:rmp|et& @: ic outline
follows:

Table of Contents
Revision History

1. Introduction
1.1 Purpose
1.2 Document Conventions
1.3 Intended Audience and Reading Suggestions
1.4 Project Scope
\ 1.5 References

“\‘1

2. Ovwerall Description
2.1 Product Perspective
2.2 Product Features
2.3 User Classes and Characteristics
2.4 Operating Environment
2.5 Design and Implementation Constraints
2.6 User Documentation

2.7 Asysgptions and Dependencies
3. E}F@nium:
b stem Feature |

System Feature 2 |and so on)

4.1 User Interfaces

4.2 Hardware Interfaces

4.3 Software Interfaces

4.4 Communications Interfaces

iy
@'ﬁﬂernﬂ Interface Requirements

5. Other Nonfunctional Requirements
5.1 Performance Requirements
5.2 Safety Requirements

5.3 Security Requirements
5.4 Software Quality Atiributes

4. Other Requirements
Appendix A: Glossary
Appendix B: Analysis Models
Appendix C: Issues List

A detailed description of each SRS topic can be ob-
tained by downloading the SRS template at the URL
noted in this sidebar.

/

By SWARNIMA SHRIVASTAVA

62

Specification Tools

e Flow based- DFD
e Data based QQQ

Data Flow Diagram

» Data flow diagram is graphical @resentation of flow of
data in an information system:.”It is capable of mention
of depicting incoming d ow, outgoing data flow and
stored data. There R prominent difference between
DFD and Flowch@x he flowchart depicts flow of
control In prog@modules. DFDs depict flow of data
in the systeny“at various levels. DFD does not contain
any contr@%’r branch elements.

Types of DFD

Data Flow Diagrams are either Logical or Physical.

>

e Logical DFD : This typeQ@ FD concentrates on the
system process, and flo '@‘data In between the system .

For example ina B g software system, how data is
moved between di nt entities.
O
>

» Physical I@ This type of DFD shows how the data
flow is aectually implemented in the system. It is more
specific and close to the implementation.

DFD Components

Data Flow
. o
Entity Process Data Store p
Q&Q

\.

e Entities - Entities a@%ource and destination of
Information dat,a‘g@]tities are represented by a
rectangles witrb‘ﬁﬁeir respective names.

>
S

o Processcjz\ctivities and action taken on the data
are represented by Circle or Round-edged
rectangles.

o Data Storage - There are two variants of data
storage - It can either be represented as a
rectangle with absence of foth smaller sides or
as an open-sided rectanB with only one side
missing. Q\Q

~

N :

e Data Flow K@Tovement of data is shown by
pointed ar«ﬁﬁs. Data movement is shown from
the baseCo? arrow as Its source towards head of

the arrow as destination.

Levels of DFD

o Level 0- Highest abstraction level DFD is known as
Level 0 DFD, which depicts the entire information
system as one diagram cor@% Ing all the underlying
details. Level 0 DFDs arg\also known as context level

DEDs. >

Online shopping system

G
lelivery
JapJo

customers

68

Level | DFD

e The Level 0 DFD is broken do Q{r?o more specific, Level
1 DFD. Level 1 DFD depi @5@:@90 modules in the system

and flow of data amon lous modules. Level 1 DFD
also mentions basic pr es and sources of information.
o0

Verification

e
Customer Data ¢—

':10\" Processing

Accounts

Finance

Order
Aaaleq

\ 4

Customers

By SWARNIMA SHRIVASTAVA

70

Data Dictionary

e The data dictionary is centralized repository of
Information about such a_eaning relationship
to other data,origin,usage and format. Data
dictionary is read onlycset of tables that provide
Information abou data base. Data dictionary

manages metad tabase about database).
&O
» Data Diﬁé@ary contains:-
1) Definitton of all schema object in the

database(table,views,indexes,clusters,synonym
s,procedure,functions,triggers)

2)

3)
4)
9)
6)

/)

How much space has been allocated for and is
currently used by schemg&bject.

Default value for cql S.
Integrity constrai\@%formaﬂon.
Names of user,g&

Privilege{s.\@ﬂd roles each user has been
grantegh <,

Auditing information such as who has
accessed.

Data Dictionary files

1) Field’s File
FIELD NAME TYPE ' |‘SIZE
Rollno Number Q&. 5
Name Text Q |0
Courseid Numl?éip 5
xO

Y
2) File’s EI/
Student 200
Course 300

By SWARNIMA SHRIVASTAVA

73

Data dictionary are of two types

» Active data dictionary:- Managed automatically by the
DBMS . Maintained by systeE)G self.

QY

. Y _

» Passive data dicti @:—Also called non integrated
data dictionary use& ly for documentation purpose .

Managed by use\@'{of the system and modified whenever
the db changﬂ.

Cjo

OOAD - Object Oriented Analysis

 In the system analysis or object-oriented
analysis phase of softa@re development,
the system requirements are determined,
the classes ares"identified and the
relationships ang&g classes are identified.

e The three @%Iysis techniques that are
used in ¢onjunction with each other for
object-ﬁv?entec analysis are object
modelling, dynamic modelling, and
functional modelling.

Object modeling

Object modeling develops the static
structure of the softw@@ system In terms
of objects. It iden@f?es the objects, the
classes Into W\I@ the objects can be
grouped intg:> and the relationships
between Qobjects. It also identifies the
main @ftributes and operations that
characterize each class.

The process of object modeling can be
visualized in the following steps —

e ldentify objects and gr@ﬁ% into classes
e ldentify the relatloq@ﬁlps among classes
» Create user ob‘ge%t model diagram

* Define users]ect attributes

* Define h‘}operatlons that should be
performed on the classes.

Dynamic Modeling

Dynamic Modeling can be defined as “a
way of describing C@ an individual
object responds to &vents, either internal
events triggere@fby other objects, or
external events”triggered by the outside
world”. &&Q

Cjo

The process of dynamic modeling can be
visualized in the following steps —

» ldentify states of each object.

o ldentify events analyze the
applicability of actj@ﬂs.

» Construct dyn&%ic model diagram,
comprlsmg ate transition diagrams.

o Express @&h state in terms of object
attnbut@g

e Validate the state—transition diagrams
drawn.

Functional Modeling

» Functional Modeling is the final component of
object-oriented analysis. g& functional model
shows the processes th@@ are performed within
an object and how t@%ata changes as It moves
between methods‘.g&specifies the meaning of the
operations of c@i’ect modeling and the actions of
dynamic Q&deling. The functional model
correspc@&s to the data flow diagram of
traditional structured analysis.

The process of functional modeling can be
visualized in the following steps —

o |dentify all the inputs and outputs.

e Construct data flow @iagrams showing
functional dependencies.c®

« State the purpose of Saﬁofunction.
o ldentify constraingg
e Specify opti%izﬁion criteria.

>

